x2+3ai+jx^{2+3} \\ a_{i+j} x2+3ai+j
这是一个公式
x2+3ai+j x^{2+3} \\ a_{i+j} x2+3ai+j
哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈
1+2+3⏞6a,b,c⏟abc\overbrace{1+2+3}^{6} \\ \underbrace{a,b,c}_{abc}1+2+3 6 abca,b,c
∑i=13i2=1∗1+2∗2+3∗3+1∗1+2∗2+3∗3+1∗1+2∗2+3∗3=14\sum_{i=1}^{3} i^2 = 1*1+2*2+3*3+1*1+2*2+3*3+1*1+2*2+3*3=14 i=1∑3 i2=1∗1+2∗2+3∗3+1∗1+2∗2+3∗3+1∗1+2∗2+3∗3=14
1,2,34,5,67,8,9\begin{matrix} 1,2,3 \\ 4,5,6 \\ 7,8,9 \end{matrix} 1,2,34,5,67,8,9
[1,2,34,5,67,8,9]\begin{bmatrix} 1,2,3 \\ 4,5,6 \\ 7,8,9 \end{bmatrix} 1,2,34,5,67,8,9
∣1,2,34,5,67,8,9∣ \begin{vmatrix} 1,2,3 \\ 4,5,6 \\ 7,8,9 \end{vmatrix} 1,2,34,5,67,8,9
(1,2,34,5,67,8,9) \begin{pmatrix} 1,2,3 \\ 4,5,6 \\ 7,8,9 \end{pmatrix} 1,2,34,5,67,8,9
F(n)={0,n=11,n=2F(n−1)+F(n−2),n>2\begin{equation*} F(n) = \begin{cases} 0 ,& n=1 \\ 1 ,& n=2 \\ F(n-1) + F(n-2) ,& n>2 \end{cases} \end{equation*} F(n)=⎩⎨⎧ 0,1,F(n−1)+F(n−2), n=1n=2n>2
F(n)={0,n=11,n=2F(n−1)+F(n−2)+F(n−1)+F(n−2)+F(n−1)+F(n−2)+F(n−1)+F(n−2),n>2\begin{equation*} F(n) = \begin{cases} 0 ,& n=1 \\ 1 ,& n=2 \\ F(n-1) + F(n-2) + F(n-1) + F(n-2) + F(n-1) + F(n-2) + F(n-1) + F(n-2) ,& n>2 \end{cases} \end{equation*}F(n)=⎩⎨⎧
0,1,F(n−1)+F(n−2)+F(n−1)+F(n−2)+F(n−1)+F(n−2)+F(n−1)+F(n−2), n=1n=2n>2